(本小题满分13分) 设关于的一元二次方程 ()有两根和,且满足 . (Ⅰ)试用表示; (Ⅱ)求证:数列是等比数列; (Ⅲ)当时,求数列的通项公式,并求数列的前项和.
如图所示:小圆圈表示网络的结点,结点之间的连线表示它们有网络联系,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可以分开沿不同路线同时传递,求单位时间内传递的最大信息量.
由数字1,2,3,4 (1)可组成多少个三位数 (2)可组成多少个没有重复数字的三位数 (3)可组成多少个没有重复数字的三位数,且百位数字大于十位数字,十位数字大于个位数字.
有一项活动,需在3名老师,8名男同学和5名女同学中选人参加. (1)若只需一人参加,有多少种不同的选法? (2)若需老师、男同学、女同学各一人参加,有多少种不同的选法? (3)若需一名老师,一名同学参加,有多少种不同的选法?
如图所示:A→O有几种不同的走法?(不重复过一点)
用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是什么?