(10分)将一颗骰子(它的六个面分别标有点数1,2,3,4,5,6)先后抛掷两次,观察向上的点数,求:两数之积是6的倍数的概率;
设椭圆:,, 分别是椭圆的左右焦点,过椭圆右焦点的直线与椭圆交于,两点. (1)是否存在直线,使得 ,若存在,求出直线的方程;若不存在,说明理由; (2)若是椭圆经过原点的弦,且,求证:为定值.
如图,四棱锥中,侧面是边长为2的正三角形,底面是菱形,,点在底面上的射影为的重心,点为线段上的点. (1)当点为的中点时,求证:平面; (2)当平面与平面所成锐二面角的余弦值为时,求的值.
在中,角,,所对的边分别为,,,已知 (1)求角的大小; (2)若,求的取值范围.
已知函数,. (1)若,过点作曲线的切线,求的方程; (2)若曲线与直线只有一个交点,求实数的取值范围.
如图,椭圆()经过点,且离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)经过点,且斜率为的直线与椭圆交于不同两点,(均异于点),证明:直线与的斜率之和为.