从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图: (I)求这500件产品质量指标值的样本平均值x和样本方差s2(同一组的数据用该组区间的中点值作代表); (II)由直方图可以认为,这种产品的质量指标Z服从正态分布,其中μ近似为样本平均数x,近似为样本方差s2. (i)利用该正态分布,求P(187.8<Z<212.2); (ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间187.8,212.2的产品件数.利用(i)的结果,求EX. 附:150≈12.2
若则,。
抛物线y2=2px(p>0)上纵坐标为-p的点M到焦点的距离为2. (Ⅰ)求p的值; (Ⅱ)如图,A,B,C为抛物线上三点,且线段MA,MB,MC 与x轴交点的横坐标依次组成公差为1的等差数列,若△AMB的面积是△BMC面积的,求直线MB的方程.
已知函数 R). (Ⅰ)若 ,求曲线 在点 处的的切线方程; (Ⅱ)若 对任意 恒成立,求实数a的取值范围.
已知数列 {an} 是首项为 a1=1 的等差数列,其前n项和为Sn,数列 {bn} 是首项 b1=2 的等比数列,且 b2S2=16,b1b3=b4. (Ⅰ)求数列 {an},{bn} 的通项公式; (Ⅱ)若数列 {cn} 满足 ,求数列 {cn} 的前n项和 Tn.
如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,D为BC中点. (Ⅰ) 求证:A1B//平面ADC1; (Ⅱ) 求证:C1A⊥B1C; (Ⅲ) 求直线B1C1与平面A1B1C所成的角.
设函数. (Ⅰ)求的最大值,并写出使取最大值是的集合; (Ⅱ)求的单调递增区间; (Ⅲ)已知△ABC中,角A,B,C的对边分别为a,b,c.若,,求a的最小值.