已知函数 f ( x ) = x 3 + 3 x - a ( a > 0 ) ,若 f ( x ) 在 [ - 1 , 1 ] 上的最小值记为 g ( a ) . (1)求 g ( a ) ; (2)证明:当 x ∈ [ - 1 , 1 ] 时,恒有 f ( x ) ≤ g ( a ) + 4 .
知集合,集合. (1)当时,求; (2)若,求实数的取值范围; (3)若,求实数的取值范围.
(1)计算:; (2)已知,求下列各式的值: ①②.
在平面直角坐标系xOy中,已知圆:和圆: (1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程; (2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.
如图,在四棱锥中,是正方形,平面,,分别是的中点. (1)在线段上确定一点,使平面,并给出证明; (2)证明平面平面,并求出到平面的距离.
求半径为,圆心在直线:上,且被直线:所截弦的长为的圆的方程.