设数列{an}的前n项和Sn满足=3n-2.(1)求数列{an}的通项公式;(2)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m.
在中,已知.(1)求角的值;(2)若,求的面积.
已知椭圆的离心率,且直线是抛物线的一条切线. (1)求椭圆的方程; (2)点P 为椭圆上一点,直线,判断l与椭圆的位置关系并给出理由; (3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.
已知,函数.(Ⅰ)当时,(1)若,求函数的单调区间;(2)若关于的不等式在区间上有解,求的取值范围;(Ⅱ)已知曲线在其图象上的两点,()处的切线分别为.若直线与平行,试探究点与点的关系,并证明你的结论.
如图,在四棱锥中,底面为矩形,.(1)求证,并指出异面直线PA与CD所成角的大小;(2)在棱上是否存在一点,使得?如果存在,求出此时三棱锥与四棱锥的体积比;如果不存在,请说明理由.
已知数列为等比数列,其前n项和为,且满足,成等差数列.(1)求数列的通项公式;(2)已知,记,求数列前n项和.