如图,在直三棱柱中,,。M、N分别是AC和BB1的中点。(1)求二面角的大小。(2)证明:在AB上存在一个点Q,使得平面⊥平面, 并求出的长度。
已知函数(1)求的值;(2)当时,求函数的值域.
已知等比数列满足:,公比,数列的前项和为,且.(1)求数列和数列的通项和;(2)设,证明:.
已知函数.(1)若当时,函数的最大值为,求的值;(2)设(为函数的导函数),若函数在上是单调函数,求的取值范围.
已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上.(1)求抛物线的方程;(2)已知,求过点及抛物线与轴两个交点的圆的方程;(3)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标;
如图,已知三棱柱的侧棱与底面垂直,且,,,,点、、分别为、、的中点.(1)求证:平面;(2)求证:面;(3)求点到平面的距离.