已知函数f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.(1)若曲线y=f(x)与曲线y=g(x) 在它们的交点P(2,c)处有相同的切线(P为切点),求实数a,b的值;(2)令h (x)=f(x)+g(x),若函数h(x)的单调减区间为.①求函数h(x)在区间(-∞,-1]上的最大值M(a);②若|h(x)|≤3在x∈[-2,0]上恒成立,求实数a的取值范围.
已知四棱锥的底面为直角梯形,,,底面,且,是的中点. (1)求证:直线平面; (2)若直线与平面所成的角为,求二面角的大小.
在中,角所对的边分别为.已知. (1)求的值; (2)求的面积
.同时掷四枚均匀的硬币. (1)求恰有一枚“正面向上”的概率; (2)求至少有两枚“正面向上”的概率
、 已知函数,其中.. (1)当满足什么条件时,取得极值? (2)已知,且在区间上单调递增,试用表示出的取值范围.
(本题满分16分) 数列{an}中,. (1)求a1,a2,a3,a4; (2)猜想an的表达式,并用数学归纳法加以证明.