已知椭圆的中心为,右顶点为,在线段上任意选定一点,过点作与轴垂直的直线交于两点.(Ⅰ)若椭圆的长半轴为2,离心率,(ⅰ)求椭圆的标准方程;(ⅱ)若,点在的延长线上,且成等比数列,试证明直线与相切;(Ⅱ)试猜想过椭圆上一点的切线方程的一种方法,再加以证明.
已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.(I)求椭圆的方程;(II)若点的坐标为,不过原点的直线与椭圆相交于两点,设线段的中点为,点到直线的距离为,且三点共线.求的最大值.
已知函数,其中为正实数,.(I)若是的一个极值点,求的值;(II)求的单调区间.
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:.(I)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;(II)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.
如图,在长方体中,,为的中点,为的中点.(I)求证:平面;(II)求证:平面;(III)若二面角的大小为,求的长.
已知函数.(I)求的值;(II)求函数的最小正周期及单调递减区间.