某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.(1)求1名顾客摸球2次摸奖停止的概率;(2)记为1名顾客摸奖获得的奖金数额,求随机变量的分布列和数学期望.
如图,长方体中,,点在上且,过点 的平面截长方体,截面为(在上).(1)求的长度; (2)求点C到截面的距离.
如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点.(Ⅰ) 求证:平面;(Ⅱ) 求二面角的余弦值.
已知四棱锥(如图)底面是边长为2的正方形.侧棱底面,、分别为、的中点,于。(Ⅰ)求证:平面⊥平面;(Ⅱ)直线与平面所成角的正弦值为,求PA的长;(Ⅲ)在条件(Ⅱ)下,求二面角的余弦值。
如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上方,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.(Ⅰ)求证:PQ⊥BD;(Ⅱ)求二面角P-BD-Q的余弦值;(Ⅲ)求点P到平面QBD的距离.
已知正方体ABCD—中,E为棱CC上的动点,(1)求证:⊥;(2)当E恰为棱CC的中点时,求证:平面⊥;