以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵数的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列和数学期望.(注:方差s2= [(x1-)2+(x2-)2+…+(xn-)2],其中为x1,x2,…,xn的平均数)
如图,在平面直角坐标系中,已知,,是椭圆上不同的三点,,,在第三象限,线段的中点在直线上. (1)求椭圆的标准方程; (2)求点C的坐标; (3)设动点在椭圆上(异于点,,)且直线PB,PC分别交直线OA于,两点,证明为定值并求出该定值.
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2). (1)求V关于θ的函数表达式; (2)求的值,使体积V最大; (3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
如图,在三棱柱中,侧面为菱形, 且,,是的中点. (1)求证:平面平面; (2)求证:∥平面.
已知矩阵,,计算.
设函数. (1)求的最小正周期和值域; (2)在锐角△中,角的对边分别为,若且,,求和.