某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交于,从而得到五边形的市民健身广场,设.(1)将五边形的面积表示为的函数;(2)当为何值时,市民健身广场的面积最大?并求出最大面积.
如图,直三棱柱 中,,,,点分别为和的中点. (1)证明:∥平面; (2)求三棱锥的体积.
如图所示,四棱锥中,底面是边长为2的菱形,是棱上的动点.(1)若是的中点,求证://平面; (2)若,求证:;(3)在(2)的条件下,若,,,求四棱锥的体积.
如图,平行四边形中,,,且,正方形和平面垂直,是的中点.(1)求证:平面;(2)求证:∥平面;(3)求三棱锥的体积.
如图所示,ABCD是一块边长为100 m的正方形地皮,其中AST是一半径为90 m的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在上,相邻两边CQ、CR落在正方形的边BC、CD上.求矩形停车场PQCR面积的最大值和最小值.
已知sin2θ(1+cotθ)+cos2θ(1+tanθ)=2,θ∈(0,2π),求tanθ的值.