如图,平行四边形中,,,且,正方形和平面垂直,是的中点.(1)求证:平面;(2)求证:∥平面;(3)求三棱锥的体积.
设实数满足.(1)求;(2)求展开式中含项的系数
已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点在轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且(1)求椭圆的方程;(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值
已知函数(Ⅰ)求函数的单调区间;(Ⅱ)若不等式在区间上恒成立,求实数k的取值范围;(Ⅲ)求证:
已知椭圆C的中心在原点,对称轴为坐标轴,且过(Ⅰ)求椭圆C的方程,(Ⅱ)直线交椭圆C与A、B两点,求证:
已知数列满足(Ⅰ)求数列的通项;(Ⅱ)若求数列的前n项和