已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点在轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且(1)求椭圆的方程;(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值
是否存在实数a,使得函数y=sin2x+a·cosx+a-在闭区间[0,]上的最大值是1?若存在,求出对应的a值;若不存在,试说明理由.
设-≤x≤,求函数y=log2(1+sinx)+log2(1-sinx)的最大值和最小值.
有一块半径为R,中心角为45°的扇形铁皮材料,为了获取面积最大的矩形铁皮,工人师傅常让矩形的一边在扇形的半径上,然后作其最大内接矩形,试问: 工人师傅是怎样选择矩形的四点的?并求出最大面积值.
用一块长为a,宽为b(a>b)的矩形木板,在二面角为α的墙角处围出一个直三棱柱的谷仓,试问应怎样围才能使谷仓的容积最大?并求出谷仓容积的最大值.
设二次函数f(x)=x2+bx+c(b,c∈R),已知不论α、β为何实数恒有f(sinα)≥0和f(2+cosβ)≤0。 (1)求证: b+c=-1; (2)求证c≥3; (3)若函数f(sinα)的最大值为8,求b,c的值.