如图所示,ABCD是一块边长为100 m的正方形地皮,其中AST是一半径为90 m的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在上,相邻两边CQ、CR落在正方形的边BC、CD上.求矩形停车场PQCR面积的最大值和最小值.
已知数列是一个等差数列,且,。(Ⅰ)求的通项;(Ⅱ)求前n项和的最大值.
如图,四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,作EF⊥PB交PB于F(1)求证:PA∥平面EDB;(2)求证:PB⊥平面EFD;(3)求二面角C-PB-D的大小。
在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1与C1B所成角的大小。
函数的定义域为,且满足对于任意,有.⑴求的值;⑵判断的奇偶性并证明;⑶如果≤,且在上是增函数,求的取值范围.
已知函数⑴若的定义域和值域均是,求实数的值;⑵若在上是减函数,且对任意的,总有≤,求实数的取值范围.