(Ⅰ)设椭圆上的点到两点、距离之和等于,写出椭圆的方程和焦点坐标;(Ⅱ)设是(1)中所得椭圆上的动点,求线段的中点的轨迹方程;(Ⅲ)设点是椭圆上的任意一点,过原点的直线与椭圆相交于,两点,当直线 , 的斜率都存在,并记为, ,试探究的值是否与点及直线有关,不必证明你的结论。
设函数,其中为正整数. (1)判断函数的单调性,并就的情形证明你的结论; (2)证明:; (3)对于任意给定的正整数,求函数的最大值和最小值.
(本小题满分12分) 已知点,点在轴上,点在轴的正半轴上,点在直线上,且 满足. (Ⅰ)当点在轴上移动时,求点的轨迹的方程; (Ⅱ)设、为轨迹上两点,且>1, >0,,求实数, 使,且.
(本小题满分12分) 已知为坐标原点,点、分别在轴、轴上运动,且,动点满足,设点的轨迹为曲线,定点,直线交曲线于另外一点. (1)求曲线的方程; (2)求面积的最大值.
(本小题满分13分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线L在y轴上的截距为m(m≠0),L交椭圆于A、B两个不同点。 (1)求椭圆的方程; (2)求m的取值范围; (3)求证直线MA、MB与x轴始终围成一个等腰三角形。
已知数列()与{)有如下关系: (1)求数列(}的通项公式。 (2)设是数列{}的前n项和,当n≥2时,求证: