(本小题满分16分)已知椭圆的离心率为,一条准线.(1)求椭圆的方程;(2)设O为坐标原点,是上的点,为椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于两点.①若,求圆的方程;②若是l上的动点,求证:点在定圆上,并求该定圆的方程.
(本小题满分12分)甲乙两个学校高三年级分别有1200人,1000人,为了了解两个学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两个学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
乙校:(Ⅰ)计算x,y的值。(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率。
(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有90%的把握认为两个学校的数学成绩有差异。参考数据与公式:由列联表中数据计算临界值表
(本小题满分12分)数列的前项和记为,,点在直线上,.(Ⅰ)当实数为何值时,数列是等比数列?(Ⅱ)在(Ⅰ)的结论下,设,,是数列的前项和,求。
(本小题满分12分)已知,其中向量=,=(x∈R)(Ⅰ)求f (x)的周期和单调递减区间;(Ⅱ)在△ABC中,角A、B、C的对边分别为,,=,,求边长b和c的值(b>c)。
如果一个数列的各项都是实数,且从第二项起,每一项与它的前一项的平方差是同一个常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.(Ⅰ)若数列既是等方差数列,又是等差数列,求证:该数列是常数列;(Ⅱ)已知数列是首项为,公方差为的等方差数列,数列的前项和为,且满足.若不等式对恒成立,求的取值范围.
已知椭圆的右顶点为,上顶点为,直线与椭圆交于不同的两点,若是以为直径的圆上的点,当变化时,点的纵坐标的最大值为.(Ⅰ)求椭圆的方程;(Ⅱ)过点且斜率为的直线与椭圆交于不同的两点,是否存在,使得向量与共线?若存在,试求出的值;若不存在,请说明理由.