(本小题满分16分)已知椭圆的离心率为,一条准线.(1)求椭圆的方程;(2)设O为坐标原点,是上的点,为椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于两点.①若,求圆的方程;②若是l上的动点,求证:点在定圆上,并求该定圆的方程.
本小题满分14分)已知正项数列的前项和为,且满足. (I) 求数列的通项公式; (Ⅱ)设数列满足,且数列的前项和为, 求证:数列为等差数列.
已知函数,. (I) 当时,求的值; (Ⅱ)已知中,角的对边分别为. 若,.求的最小值.
如图,已知动直线经过点,交抛物线于两点,坐标原点是的中点,设直线的斜率分别为. (1)证明: (2)当时,是否存在垂直于轴的直线,被以为直径的圆截得的弦长为定值?若存在,请求出直线的方程;若不存在,请说明理由.
已知函数其中是常数. (1)当时,求在点处的切线方程; (2)求在区间上的最小值.
如图,在直三棱柱中,,点是的中点。 (1)证明:平面平面; (2)求与平面所成角的正切值;