(本小题满分16分)已知函数,(1)若在上的最大值为,求实数的值;(2)若对任意,都有恒成立,求实数的取值范围;(3)在(1)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。
设函数(1)求函数的单调区间;(2)求在[—1,2]上的最小值;(3)当时,用数学归纳法证明:
(本小题满分12分)已知定点和直线,过定点F与直线相切的动圆圆心为点C。(1)求动点C的轨迹方程;(2)过点F在直线l2交轨迹于两点P、Q,交直线l1于点R,求的最小值。
(本小题满分12分)济南市有大明湖、趵突泉、千佛山、园博园4个旅游景点,一位客人浏览这四个景点的概率分别是0.3,0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值。(1)求=0对应的事件的概率;(2)求的分布列及数学期望。
(本小题满分12分)如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC上一点,且PA//平面BDM, (1)求证:M为PC的中点; (2)求证:面ADM⊥面PBC。
(本小题满分12分)已知数列的各项为正数,前 (1)求证:数列是等差数列;(2)设