某电视台“挑战60秒”活动规定上台演唱:(I)连续达到60秒可转动转盘(转盘为八等分圆盘)一次进行抽奖,达到90秒可转两次,达到120秒可转三次(奖金累加).(2)转盘指针落在I、II、III区依次为一等奖(500元)、二等奖(200元)、三等奖(100元),落在其它区域不奖励.(3)演唱时间从开始到三位评委中至少1人呜啰为止,现有一演唱者演唱时间为100秒.①求此人中一等奖的概率;②设此人所得奖金为,求的分布列及数学期望.
已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<)的周期为π,且图象上有一个最低点为M.(1)求f(x)的解析式;(2)求函数y=f(x)+f的最大值及对应x的值.
已知f(x)=cos(ωx+φ)的最小正周期为π,且f=.(1)求ω和φ的值;(2)在给定坐标系中作出函数f(x)在[0,π]上的图象;(3)若f(x)>,求x的取值范围.
已知a=(2cosx,cos2x),b=(sinx,-),f(x)=a·b.(1)求f(x)的振幅、周期,并画出它在一个周期内的图象;(2)说明它可以由函数y=sinx的图象经过怎样的变换得到.
已知函数f(x)=2·sincos-sin(x+π).(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.
为了得到函数y=2sin(x∈R)的图象,只需把函数y=2sinx(x∈R)的图象上所有的点经过怎样的变换得到?