某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是,样本数据分组为,,,,.(1)求直方图中的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.
已知函数(1)当时,求函数的最小值和最大值;(2)设的内角的对应边分别为,且,若向量与向量共线,求的值.
本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)。有甲乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。(1)求出甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望
已知向量=(cosx,sinx), ,且x∈[0,].(1)求(2)设函数=+,求函数的最值及相应的的值。
已知数列的前项和为,满足,且依次是等比数列的前两项。(1)求数列及的通项公式;(2)是否存在常数且,使得数列是常数列?若存在,求出的值;若不存在,说明理由。
设不等式|2x-1|<1的解集为M.(1)求集合M;(2)若a,b∈M,试比较ab+1与a+b的大小.