某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是,样本数据分组为,,,,.(1)求直方图中的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.
(本小题共13分)已知函数.(Ⅰ)若在处取得极值,求a的值;(Ⅱ)求函数在上的最大值.
(本小题共13分)已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△,使得平面⊥平面ABD.(Ⅰ)求证:平面ABD;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)求二面角的余弦值.
(本小题共14分)张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,.(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.
本小题共13分)已知等差数列的前项和为,a2=4, S5=35.(Ⅰ)求数列的前项和;(Ⅱ)若数列满足,求数列的前n项和.
对于数列,若满足,则称数列为“0-1数列”.定义变换,将“0-1数列”中原有的每个1都变成0,1,原有的每个0都变成1,0. 例如:1,0,1,则设是“0-1数列”,令.(Ⅰ) 若数列:求数列;(Ⅱ) 若数列共有10项,则数列中连续两项相等的数对至少有多少对?请说明理由;(Ⅲ)若为0,1,记数列中连续两项都是0的数对个数为,.求关于的表达式.