某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是,样本数据分组为,,,,.(1)求直方图中的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.
学校科技小组在计算机上模拟航天器变轨返回试验. 设计方案如图:航天器运行(按顺时针方向)的轨迹方程为,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以轴为对称轴、为顶点的抛物线的实线部分,降落点为. 观测点同时跟踪航天器. 试问:当航天器在轴上方时,观测点测得离航天器的距离分别为多少时,应向航天器发出变轨指令?
学校科技小组在计算机上模拟航天器变轨返回试验. 设计方案如图:航天器运行(按顺时针方向)的轨迹方程为,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以轴为对称轴、为顶点的抛物线的实线部分,降落点为. 观测点同时跟踪航天器.求航天器变轨后的运行轨迹所在的曲线方程。
已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。求双曲线C2的方程。
双曲线C与椭圆有相同的焦点,直线y=为C的一条渐近线. 过点P(0,4)的直线,交双曲线C于A,B两点,交x轴于Q点(Q点与C的顶点不重合).当,且时,求Q点的坐标.
函数的定义域为R,且 (Ⅰ)求证:; (Ⅱ)若上的最小值为,试求f(x)的解析式; (Ⅲ)在(Ⅱ)的条件下记试比较与的大小并证明你的结论.