地为绿化环境,移栽了银杏树棵,梧桐树棵.它们移栽后的成活率分别为、,每棵树是否存活互不影响,在移栽的棵树中:(1)求银杏树都成活且梧桐树成活棵的概率;(2)求成活的棵树的分布列与期望.
设为实数,函数, (1) 求函数的单调区间与极值; (2) 求证:当且时,
已知圆G:经过椭圆的右焦点F及上顶点B.过椭圆外一点且倾斜角为的直线交椭圆于C、D两点. (1) 求椭圆方程; (2) 若右焦点F在以CD为直径的圆E的内部,求的取值范围。
某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形. (1) 求出,并猜测的表达式; (2) 求证:+++…+.
如图, 内接于⊙, 是⊙的直径, 是过点的直线, 且. (1) 求证: 是⊙的切线; (2)如果弦交于点, , , , 求.
已知不等式的解集是 (1)求实数的取值集合M; (2) 若,∈M,试比较与的大小