已知函数f(x)=ax-ln x,g(x)=,它们的定义域都是(0,e],其中e是自然对数的底e≈2.7,a∈R.(1)当a=1时,求函数f(x)的最小值;(2)当a=1时,求证:f(m)>g(n)+对一切m,n∈(0,e]恒成立;(3)是否存在实数a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,说明理由.
已知等差数列 (1)求的通项公式; (2)数列,且),求证; (3)求通项公式及前n项和。
某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元。 (1)问第几年开始获利; (2)若干年后有两种处理方案:①年平均利润最大时,以26万元出售该船;②总纯收入获利最大时,以8万元出售该船。问哪种方案更合算。
设函数 (1)求函数的单调区间; (2)若。
已知向量 (1)若; (2)若函数在区间(—1,1)上是增函数,求t的取值范围。
△ABC中 (1)求△ABC的面积; (2)若b+c=6,求a的值。