(本小题满分12分)甲乙两支球队进行总决赛,比赛采用五场三胜制,即若有一队先胜三场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一,据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.(Ⅰ)求总决赛中获得门票总收入恰好为220万元的概率;(Ⅱ)设总决赛中获得的门票总收入为X,求X的分布列和数学期望.
已知函数 (1)若不等式的解集为或,求的表达式; (2)在(1)的条件下, 当时, 是单调函数, 求实数k的取值范围; (3)设, 且为偶函数, 判断+能否大于零?
设函数(a>0),且方程(x)-9x=0的两个根分别为1,4. (1)当a=3且曲线y="f" (x)过原点时,求f (x)的解析式; (2)若f (x)在(-∞,+∞)内无极值点,求a的取值范围.
){}、{}都是各项为正的数列,对任意的,都有、、成等差数列,、、成等比数列. (1) 试问{}是否为等差数列,为什么? (2) 如=1,=,求;
已知:: (1)若,求实数的值; (2)若是的充分条件,求实数的取值范围.
已知为等差数列,++=105,=99,表示的前项和,问n取什么值最大。