已知等比数列{an}的前n项和Sn满足:S4-S1=28,且a3+2是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若数列{an}为递增数列,,,问是否存在最小正整数n使得成立?若存在,试确定n的值,不存在说明理由.
(本小题满分14分)已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍,且经过点(2,1),平行于直线在轴上的截距为,设直线交椭圆于两个不同点、,(1)求椭圆方程;(2)求证:对任意的的允许值,的内心在定直线。
已知函数成等差数列,点是函数图像上任意一点,点关于原点的对称点的轨迹是函数的图像。(1)解关于的不等式;(2)当时,总有恒成立,求的取值范围。
如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. ,为的中点.(1)当时,求平面与平面的夹角的余弦值;(2)当为何值时,在棱上存在点,使平面?
(本小题满分12分)(1)求直线被双曲线截得的弦长;(2)求过定点的直线被双曲线截得的弦中点轨迹方程。
已知集合在平面直角坐标系中,点的横、纵坐标满足。(1)请列出点的所有坐标;(2)求点不在轴上的概率;(3)求点正好落在区域上的概率。