已知等比数列{an}的前n项和Sn满足:S4-S1=28,且a3+2是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若数列{an}为递增数列,,,问是否存在最小正整数n使得成立?若存在,试确定n的值,不存在说明理由.
已知二次函数满足: (1)在时有极值; (2)图象过点,且在该点处的切线与直线平行.求的解析式;
在△ABC中,BC=a,AC=b,a,b是方程的两个根, 且。 求:(1)角C的度数; (2)AB的长度。
已知等比数列中,,求其第4项及前5项和.
(本题12分)如图: PA⊥矩形ABCD所在平面,M,N分别是AB,PC的中点。 (1)求证:M N∥平面PAD。 (2)求证:M N⊥CD。 (3) 若∠PDA=45°,求证; MN⊥平面PCD.
(本题14分)如图:在二面角中,A、B,C、D,ABCD为矩形,且PA=AD,M、N依次是AB、PC的中点, (1)求二面角的大小 (2)求证: (1)求异面直线PA和MN所成角的大小