在中,角、、的对边分别为,若,且。(1)、求的面积;(2)、若,求的值。
(本小题12分)四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。(1)求证:BC⊥平面PAC;(2)求二面角D-PC-A的大小的正切值;(3)求点B到平面PCD的距离。
(本小题满分12分)已知数列满足(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,证明:是等差数列;(Ⅲ)证明:
(本小题10分)已知向量=(1+cosB,sinB)且与向量=(0,1)所成的角为,其中A、B、C为ΔABC的三个内角。(1)求角B的大小;(2)若AC=,求ΔABC周长的最大值。
(本小题满分14分)椭圆E的中心在原点O,焦点在x轴上,离心率,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:(λ≥2)。(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程。
关于x的方程2x2-tx-2=0的两根为函数f(x)=(1)求f(的值。(2)证明:f(x)在[上是增函数。(3)对任意正数x1.x2,求证: