(本小题满分14分)椭圆E的中心在原点O,焦点在x轴上,离心率,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:(λ≥2)。(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程。
(本小题满分12分) 已知的三内角A,B,C所对三边分别为a,b,c,且 (I)求的值。 (II)若的面积求a的值。
(本小题满分12分)一射击测试每人射击三次,每击中目标一次记10分。没有击中记0分,某人每次击中目标的概率为 (I)求此人得20分的概率;(II)求此人得分的数学期望与方差。
(本小题满分12分) 已知甲盒内有大小相同的1个红球和3个白球,乙盒内有大小相同的2个红球和4个白球,现从甲、乙两个盒内各任取2个球. (1)求取出的4个球均为白球的概率; (2)求取出的4个球中恰有1个红球的概率; (3)设为取出的4个球中红球的个数,求的分布列和数学期望.
(本小题满分12分) 如图,四棱锥中,底面, .底面为梯形,,.,点在棱上,且. (1)求证:平面; (2)求二面角的大小.
(本小题满分12分) 已知圆的方程为. (1)求过点的圆的切线方程; (2)过点作直线与圆交于两点,求的最大面积以及此时直线的斜率.