由某种设备的使用年限(年)与所支出的维修费(万元)的数据资料,算得,,, .(Ⅰ)求所支出的维修费对使用年限的线性回归方程;(Ⅱ)判断变量与之间是正相关还是负相关;(Ⅲ)估计使用年限为8年时,支出的维修费约是多少.附:在线性回归方程中,,,其中,为样本平均值,线性回归方程也可写为.
((本小题满分14分) 在数列,中,a1=2,b1=4,且成等差数列,成等比数列() (Ⅰ)求a2,a3,a4及b2,b3,b4,由此猜测,的通项公式,并证明你的结论; (Ⅱ)证明:.
((本小题满分12分) 已知椭圆的左、右两个焦点为,离心率为,又抛物线与椭圆有公共焦点. (1)求椭圆和抛物线的方程; (2)设直线经过椭圆的左焦点且与抛物线交于不同两点P、Q且满足,求实数的取值范围.
(本小题满分12分) 已知定义在正实数集上的函数,其中。设两曲线有公共点,且在公共点处的切线相同。 (1)若,求的值;(2)用表示,并求的最大值。
(本小题满分12分) 甲乙两个奥运会主办城市之间有7条网线并联,这7条网线能通过的信息量分别为l,1,2,2,2,3,3,现从中任选三条网线,设可通过的信息量为X,当可通过的信息量X≥6,则可保证信息通畅. (1)求线路信息通畅的概率; (2)求线路可通过的信息量X的分布列及期望。
(本小题满分12分) 如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点, (1)证明:EF∥面PAD; (2)证明:面PDC⊥面PAD; (3)求锐二面角B—PD—C的余弦值.