(本小题满分12分)椭圆:的离心率为,长轴端点与短轴端点间的距离为.(1)求椭圆的方程;(2)设过点的直线与椭圆交于两点,为坐标原点,若为直角三角形,求直线的斜率.
(本小题12分)设函数, (1)求的周期和对称中心; (2)求在上值域.
(本小题12分)已知全集U=R,非空集合<,<. (1)当时,求; (2)命题,命题,若q是p的必要条件,求实数的取值范围.
已知点,是抛物线上相异两点,且满足. (Ⅰ)若的中垂线经过点,求直线的方程; (Ⅱ)若的中垂线交轴于点,求的面积的最大值及此时直线的方程.
已知函数,; (Ⅰ)若函数在[1,2]上是减函数,求实数的取值范围; (Ⅱ)令,是否存在实数,当 (是自然对数的底数)时,函数的最小值是.若存在,求出的值;若不存在,说明理由.
如图,在矩形中,,点在边上,点在边上,且,垂足为,若将沿折起,使点位于位置,连接,得四棱锥. (Ⅰ)求证:; (Ⅱ)若,直线与平面所成角的大小为,求直线与平面所成角的正弦值.