(本小题12分)四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。(1)求证:BC⊥平面PAC;(2)求二面角D-PC-A的大小的正切值;(3)求点B到平面PCD的距离。
设. (1)求的最大值及最小值周期; (2)在中,角的对边分别为,锐角满足,求的值
已知函数. (1)若在区间上不是单调函数,求实数的范围; (2)若对任意,都有恒成立,求实数的取值范围; (3)当时,设,对任意给定的正实数,曲线上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在轴上?请说明利用.
已知函数为奇函数. (1)若,求函数的解析式; (2)当时,不等式在上恒成立,求实数的最小值; (3)当时,求证:函数在上至多一个零点.
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月的处理量最少400吨,最多600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为: 且每处理一吨二氧化碳得到可利用的化工产品价值为100元. (1)该单位每月处理量为多少时,才能使每吨的平均处理成本最低? (2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
设,解关于的不等式.