已知函数的图像在点处的切线方程为.(1)求实数、的值;(2)求函数在区间上的最大值;(3)曲线上存在两点、,使得△是以坐标原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围.
(本小题满分12分)已知函数f(x)=(x∈R).⑴当f(1)=1时,求函数f(x)的单调区间;⑵设关于x的方程f(x)=的两个实根为x1,x2,且-1≤a≤1,求|x1-x2|的最大值;⑶在(2)的条件下,若对于[-1,1]上的任意实数t,不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围.
(本小题满分12分)从某校高三年级800名男生中随机抽取50名学生测量其身高,据测量被测学生的身高全部在155cm到195cm之间.将测量结果按如下方式分成8组:第一组[155,160),第二组[160,165),……,第八组[190,195],如下图是按上述分组得到的频率分布直方图的一部分.已知:第1组与第8组的人数相同,第6组、第7组和第8组的人数依次成等差数列.⑴求下列频率分布表中所标字母的值,并补充完成频率分布直方图;
⑵若从身高属于第6组和第8组的所有男生中随机的抽取2名男生,记他们的身高分别为x、y,求满足:|x-y|≤ 5事件的概率.
(本小题满分12分)已知椭圆C: +=1(a>b>0)的离心率e=,且椭圆经过点N(2,-3).(1)求椭圆C的方程;(2)求椭圆以M(-1,2)为中点的弦所在直线的方程.
(本小题满分12分)如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABC D.(1)证明:BD⊥AA1;(2)证明:平面AB1C//平面DA1C1 (3)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
(本小题满分12分)已知:在△ABC中,a,b,c分别是角A、B、C所对的边,向量m=(2sin,),n=(sin+,1)且m·n=.(1)求角B的大小;(2)若角B为锐角,a=6,S△ABC=6,求b的值.