某地去年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天新感染者人数增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天的新感染者人数减少10人(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数;(2)该地区9月份(共30天)该病毒新感染者共有多少人?
已知函数(,)的部分图象如图所示, (1)求函数的解析式; (2)若,求函数在区间上的最值.
设锐角三角形的内角、、的对边分别为、、,且. (1)求的大小; (2)若的面积,,求的值.
设:关于的不等式的解集是;:函数的定义域为.若是真命题,是假命题,求实数的取值范围.
已知函数f(x)=(a,b,λ为实常数). (1)若λ=-1,a=1. ①当b=-1时,求函数f(x)的图象在点(,f())处的切线方程; ②当b<0时,求函数f(x)在[,]上的最大值. (2)若λ=1,b<a,求证:不等式f(x)≥1的解集构成的区间长度D为定值.
已知函数f(x)=x3+ax2-a2x+2,a∈R. (1)若a<0时,试求函数y=f(x)的单调递减区间; (2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B两点的横坐标之和小于4; (3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形试求正实数a的取值范围.