甲、乙两车分别从A地将一批物品运往B地,再返回A地,如图表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?
如图,矩形PQMN内接于△ABC,矩形周长为24,AD⊥BC交PN于E,且BC=10,AE=16,求△ABC的面积.
某印刷厂一月份印刷了科技书籍50万册,第一季度共印182万册,问二、三月份平均每月的增长率是多少?
如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,. (1)求证:△ABF∽△CEB; (2)若△DEF的面积为2,求□ABCD的面积.
如图,已知一次函数的图象与反比例函数的图象交于A,B两点, 且点A的横坐标和点B的纵坐标都是-2, 求:(1)一次函数的解析式; (2)△AOB的面积.
已知反比例函数的图象经过点A(-2,3). (1)求出这个反比例函数的解析式; (2)经过点A的正比例函数的图象与反比例函数图象还有其他的交点吗?若有,求出交点坐标;若没有,说明理由.