设函数 f ( x ) = x 3 + 2 a x 2 + b x + a , g ( x ) = x 2 - 3 x + 2 ,其中 x ∈ R , a , b 为常数,已知曲线 y = f ( x ) 与 y = g ( x ) 在点 ( 2 , 0 ) 处有相同的切线 l . (Ⅰ)求 a , b 的值,并写出切线 l 的方程; (Ⅱ)若方程 f ( x ) + g ( x ) = m x 有三个互不相同的实根 0 , x 1 , x 2 ,其中 x 1 < x 2 ,且对任意的 x ∈ [ x 1 , x 2 ] , f ( x ) + g ( x ) < m ( x - 1 ) 恒成立,求实数 m 的取值范围.
.(本小题满分12分) 如图,在正方体中,E、F分别是中点。 (Ⅰ)求证:; (Ⅱ)求证:; (III)棱上是否存在点P使,若存在,确定点P位置;若不存在,说明理由。
.(本小题满分12分) 已知函数f(x)=lg(ax-bx)(a>1>b>0). (1)求y=f(x)的定义域; (2)在函数y=f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x轴; (3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.
.(本小题满分12分) 如图,多面体AED-BFC的直观图及三视图如图所示,M、N分别为AF、BC的中点。 (Ⅰ)求证:MN∥平面CDEF; (Ⅱ)求多面体A-CDEF的体积; (Ⅲ)求证:。
已知,是一次函数,并且点在函数的图象上,点在函数的图象上,求的解析式