如图,椭圆的中心为原点O,离心率e=22,一条准线的方程为x=22
(Ⅰ)求该椭圆的标准方程. (Ⅱ)设动点P满足OP⇀=OM⇀+2ON⇀,其中M,N是椭圆上的点.直线OM与ON的斜率之积为-0.5.问:是否存在两个定点F1,F2,使得PF1+PF2为定值.若存在,求F1,F2的坐标;若不存在,说明理由.
已知A、B分别是椭圆的左右两个焦点,O为坐标原点,点P)在椭圆上,线段PB与y轴的交点M为线段PB的中点。(1)求椭圆的标准方程;(2)点C是椭圆上异于长轴端点的任意一点,对于△ABC,求的值。
已知椭圆与过点A(2,0),B(0,1)的直线l有且只有一个公共点T,且椭圆的离心率.求椭圆方程
如图,在Rt△ABC中,∠CAB=90°,AB=2,AC=。一曲线E过点C,动点P在曲线E上运动,且保持|PA|+|PB|的值不变,直线l经过A与曲线E交于M、N两点。(1)建立适当的坐标系,求曲线E的方程;(2)设直线l的斜率为k,若∠MBN为钝角,求k的取值范围。
已知椭圆的中心为坐标原点,一个长轴端点为,短轴端点和焦点所组成的四边形为正方形,直线与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且.(1)求椭圆方程;(2)求m的取值范围.
是椭圆上一点,、是椭圆的两个焦点,求的最大值与最小值