已知:对,函数总有意义;函数在上是增函数;若命题“或”为真,求的取值范围。
(本小题满分12分)如图,是正方形,平面.(1)求证:平面;(2)若,,点在线段上,且,求证:平面.
(本小题满分12分)已知函数,其中,,.(1)求函数的单调递减区间;(2)在中,角..所对的边分别为..,,,且向量与共线,求边长和的值.
(本小题满分12分)汽车是碳排放量比较大的行业之一,某地规定,从年开始,将对二氧化碳排放量超过的轻型汽车进行惩罚性征税.检测单位对甲.乙两品牌轻型汽车各抽取辆进行二氧化碳排放量检测,记录如下(单位:).经测算得乙品牌轻型汽车二氧化碳排放量的平均值为.(1)求表中的值,并比较甲.乙两品牌轻型汽车二氧化碳排放量的稳定性;(2)从被检测的辆甲品牌轻型汽车中任取辆,则至少有一辆二氧化碳排放量超过的概率是多少?
设函数.(1)求的单调区间;(2)令,其图像上任意一点处切线的斜率恒成立,求实数的取值范围;(3)求证:对于任意正整数,有.
已知定点F(3,0)和动点P(x,y),H为PF的中点,O为坐标原点,且满足.(1)求点P的轨迹方程;(2)过点F作直线与点P的轨迹交于A,B两点,点C(2,0).连接AC,BC与直线分别交于点M,N.试证明:以MN为直径的圆恒过点F.