已知:对,函数总有意义;函数在上是增函数;若命题“或”为真,求的取值范围。
已知函数,且.(Ⅰ)判断的奇偶性并说明理由; (Ⅱ)判断在区间上的单调性,并证明你的结论;(Ⅲ)若在区间上,不等式恒成立,试确定实数的取值范围.
若集合,(Ⅰ)若,求集合; (Ⅱ)若,求实数的取值范围.
计算: (Ⅱ)已知,求的值.
在平面直角坐标系中,已知矩形的长为2,宽为1,边分别在x轴、y轴的正半轴上,点与坐标原点重合(如图4所示),将矩形折叠,使点落在线段上.(Ⅰ)若折痕所在直线的斜率为,试写出折痕所在直线的方程;(Ⅱ)设折痕线段为EF,记,求的解析式.
已知中,顶点,边上的中线所在直线的方程是,边上的高所在直线的方程是,求所在直线.