(本题满分12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为,(Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求的概率.
如图,在四棱锥中,底面是正方形,侧面底面.(Ⅰ)若,分别为,中点,求证:∥平面;(Ⅱ)求证:;(Ⅲ)若,求证:平面平面.
某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.
在中,,,分别是角的对边.已知,.(1)若,求角的大小;(2)若,求边的长.
已知,是函数的两个零点,其中常数,,设.(Ⅰ)用,表示,;(Ⅱ)求证:;(Ⅲ)求证:对任意的.
已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.(Ⅰ)求椭圆的标准方程;(Ⅱ)是否存在与椭圆交于两点的直线:,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.