如图,直三棱柱的底面是等腰直角三角形,,侧棱底面,且,是的中点,是上的点.(1)求异面直线与所成角的大小(结果用反三角函数表示);(2)若,求线段的长.
已知函数.(1)若曲线在点处的切线与直线平行,求实数的值;(2)若函数在处取得极小值,且,求实数的取值范围.
如图,在四棱锥中,底面为直角梯形,且,,平面底面,为的中点,是棱的中点,.(1)求证:平面;(2)求三棱锥的体积.
已知函数,钝角(角对边为)的角满足.(1)求函数的单调递增区间;(2)若,求.
已知数列的前项和为满足.(1)函数与函数互为反函数,令,求数列的前项和;(2)已知数列满足,证明:对任意的整数,有.
在平面直角坐标系中,已知点和,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.(1)当点在圆上运动时,求点的轨迹方程;(2)已知,是曲线上的两点,若曲线上存在点,满足(为坐标原点),求实数的取值范围.