设函数(其中),区间.(1)求区间的长度(注:区间的长度定义为);(2)把区间的长度记作数列,令,证明:.
已知曲线E:ax2+by2=1(a>0,b>0),经过点M的直线l与曲线E交于点A、B,且=-2.(1)若点B的坐标为(0,2),求曲线E的方程;(2)若a=b=1,求直线AB的方程.
如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明:以PQ为直径的圆恒过y轴上某定点.
已知抛物线D的顶点是椭圆C:=1的中心,焦点与该椭圆的右焦点重合.(1)求抛物线D的方程;(2)过椭圆C右顶点A的直线l交抛物线D于M、N两点.①若直线l的斜率为1,求MN的长;②是否存在垂直于x轴的直线m被以MA为直径的圆E所截得的弦长为定值?如果存在,求出m的方程;如果不存在,说明理由.
抛物线y2=2px的准线方程为x=-2,该抛物线上的每个点到准线x=-2的距离都与到定点N的距离相等,圆N是以N为圆心,同时与直线l1:y=x和l2:y=-x相切的圆,(1)求定点N的坐标;(2)是否存在一条直线l同时满足下列条件:①l分别与直线l1和l2交于A、B两点,且AB中点为E(4,1);②l被圆N截得的弦长为2.
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.(1)求抛物线C的标准方程;(2)求过点F,且与直线OA垂直的直线的方程;(3)设过点M(m,0)(m>0)的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为f(m),求f(m)关于m的表达式.