如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明:以PQ为直径的圆恒过y轴上某定点.
(本小题满分14分) 设函数的定义域为R,当x<0时,>1,且对任意的实数x,y∈R,有. (1)求,判断并证明函数的单调性; (2)数列满足,且, ①求通项公式; ②当时,不等式对不小于2的正整数 恒成立,求x的取值范围.
(本小题满分14分) 已知椭圆的焦点F与抛物线C:的焦点关于直线x-y=0 对称. (Ⅰ)求抛物线的方程; (Ⅱ)已知定点A(a,b),B(-a,0)(ab),M是抛物线C上的点,设直线AM, BM与抛物线的另一交点为.求证:当M点在抛物线上变动时(只要存在 且)直线恒过一定点,并求出这个定点的坐标.
(本小题满分14分) 已知,(),直线与函数、的图像都相切,且与函数的图像的切点的横坐标为1. (1)求直线的方程及的值; (2)若(其中是的导函数),求函数的最大值; (3)当时,比较与.
(本小题满分14分) 如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,为上的点,且BF ⊥平面ACE.(1)求证:AE⊥BE; (2)求三棱锥D-AEC的体积; (3)设M在线段AB上,且满足AM=2MB,试 在线段CE上确定一点N,使得MN∥平面DAE.
(本小题满分12分) 已知集合,在平面直角坐标系中,点的坐标x∈A,y∈A.计算: (1)点正好在第二象限的概率; (2)点不在x轴上的概率; (3)点正好落在区域上的概率.