已知抛物线D的顶点是椭圆C:=1的中心,焦点与该椭圆的右焦点重合.(1)求抛物线D的方程;(2)过椭圆C右顶点A的直线l交抛物线D于M、N两点.①若直线l的斜率为1,求MN的长;②是否存在垂直于x轴的直线m被以MA为直径的圆E所截得的弦长为定值?如果存在,求出m的方程;如果不存在,说明理由.
如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=,M是线段B1D1的中点. (1)求证:BM∥平面D1AC; (2)求证:D1O⊥平面AB1C; (3)求二面角B-AB1-C的大小.
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点. (1)证明:直线EE1∥平面FCC1; (2)求二面角B-FC1-C的余弦值.
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB. (1)求证:CE⊥平面PAD; (2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.
已知Sn是数列{an}的前n项和,且an=Sn-1+2(n≥2),a1=2. (1)求数列{an}的通项公式. (2)设bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整数k,使得 对于任意的正整数n,有Tn>恒成立?若存在,求出k的值;若不存在,说明理由.
已知等差数列{an}的前n项和为Sn,n∈N*,且a2=3,点(10,S10)在直线y=10x上. (1)求数列{an}的通项公式; (2)设bn=2an+2n,求数列{bn}的前n项和Tn.