函数的定义域为,若存在常数,使得对一切实数均成立,则称为“圆锥托底型”函数.(1)判断函数,是否为“圆锥托底型”函数?并说明理由.(2)若是“圆锥托底型” 函数,求出的最大值.(3)问实数、满足什么条件,是“圆锥托底型” 函数.
已知,写出用表示的关系等式,并证明这个关系等式.
一个袋中装有四个形状大小完全相同的球,球的编号分别为,(Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求的概率。
如图,在直三棱柱中,,.棱上有两个动点E,F,且EF = a (a为常数).(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直; (Ⅱ)判断三棱锥B—CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.
记等差数列{}的前n项和为,已知,.(Ⅰ)求数列{}的通项公式;(Ⅱ)令,求数列{}的前项和.
一种放射性元素,最初的质量为500g,按每年10﹪衰减.(Ⅰ)求t年后,这种放射性元素质量ω的表达式;(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)