如图,已知三棱柱的侧棱与底面垂直,且,,,,点、、分别为、、的中点.(1)求证:平面;(2)求证:;(3)求二面角的余弦值.
如图,的内心为,分别是的中点,,内切圆分别与边相切于;证明:三线共点.
给定两个数列,满足,, .证明对于任意的自然数n,都存在自然数,使得.
设函数,(I)求函数在上的最大值与最小值;(II)若实数使得对任意恒成立,求的值.
渔场中鱼群的最大养殖量是m吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量。已知鱼群的年增长量y吨和实际养殖量x吨与空闲率乘积成正比,比例系数为k(k>0).写出y关于x的函数关系式,指出这个函数的定义域;求鱼群年增长量的最大值;当鱼群的年增长量达到最大值时,求k的取值范围.
已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,试比较大小:(1)f(6)与f(4)