在无穷数列中,,对于任意,都有,. 设, 记使得成立的的最大值为.(1)设数列为1,3,5,7,,写出,,的值;(2)若为等差数列,求出所有可能的数列;(3)设,,求的值.(用表示)
已知函数. (1)当时,求的极值; (2)当时,讨论的单调性; (3)若对任意的,,恒有成立,求实数的取值范围.
已知圆,直线与圆相切,且交椭圆于两点,c是椭圆的半焦距,. (1)求m的值; (2)O为坐标原点,若,求椭圆的方程; (3)在(2)的条件下,设椭圆的左右顶点分别为A,B,动点,直线与直线分别交于M,N两点,求线段MN的长度的最小值.
如图所示,ABCD是正方形,平面ABCD,E,F是AC,PC的中点. (1)求证:; (2)若,求三棱锥的体积.
某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,下表是年龄的频率分布表. (1)求正整数的值; (2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少? (3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.
在等差数列中,,其前n项和为,等比数列的各项均为正数,,公比为q,且,. (1)求与; (2)设数列满足,求的前n项和.