在平面直角坐标系xOy中,已知椭圆C:x23+y2=1.如图所示,斜率为kk>0且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D-3,m. (1)求m2+k2的最小值; (2)若OG2=OD·OE
(i)求证:直线l过定点; (ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.
如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D. (1)求证:AT2=BT·AD; (2)E、F是BC的三等分点,且DE=DF,求∠A.
椭圆C:(a>b>0)的离心率为,P(m,0)为C的长轴上的一个动点,过P点斜率为的直线l交C于A、B两点.当m=0时, (1)求C的方程; (2)求证:为定值.
已知函数f(x)=2ex-ax-2(a∈R) (1)讨论函数的单调性; (2)当x≥0时,f(x)≥0,求a的取值范围.
如图,在直三棱柱ABC-A1B1C1中,点D是BC的中点. (1)求证:A1B∥平面ADC1; (2)若AB=AC,BC=AA1=2,求点A1到平面ADC1的距离.
某公司对夏季室外工作人员规定如下:当气温超过35℃时,室外连续工作时间严禁超过100分钟;不少于60分钟的,公司给予适当补助.随机抽取部分工人调查其高温室外连续工作时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中工作时间范围是[0,100],样本数据分组为[0,20),[20,40),[40.60),[60,80),[80,100]. (1)求频率分布直方图中x的值; (2)根据频率分布直方图估计样本数据的中位数; (3)用这个样本的频率分布估计总体分布,将频率视为概率;用分层抽样的方法从享受补助人员和不享受补助人员中抽取25人的样本,检测他们健康状况的变化,那么这两种人员应该各抽取多少人?