已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.(1)求数列{an}的通项公式.(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.
设的定义域为,对于任意正实数恒有,且当时, (1)求的值; (2)求证:在上是增函数; (3)解关于的不等式.
已知函数. (Ⅰ) 求函数的最小值和最小正周期; (Ⅱ) 已知内角的对边分别为,且,若向量与共线,求的值.
已知,不等式的解集是, (Ⅰ) 求的解析式; (Ⅱ) 若对于任意,不等式恒成立,求t的取值范围.
已知等差数列满足:,,的前n项和为. (Ⅰ) 求及; (Ⅱ) 令(),求数列的前n项和.
设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+的值域,集合C为不等式(ax-)(x+4)≤0的解集. (1)求A∩B; (2)若C⊆∁RA,求a的取值范围.