(本小题满分12分)已知,,其中,函数的最小正周期为.(Ⅰ)求的单调递增区间;(Ⅱ)在中,角,,的对边分别为,,.且,,求角、、的大小.
(本小题满分为14分)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)在图2中,若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥BDEG的体积.
(本小题满分为14分)已知函数,点分别是函数图象上的最高点和最低点.(1)求点的坐标以及的值;(2)设点分别在角的终边上,求的值.
(本小题满分为14分)已知定义域为R的函数是奇函数.(1)求a,b的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
(本小题满分为10分)设数列的前项和为,已知(,为常数),,.(1)求数列的通项公式;(2)求所有满足等式成立的正整数,.
(本小题满分为10分)如图,将长为4,宽为1的长方形折叠成长方体ABCD-A1B1C1D1的四个侧面,记底面上一边,连接A1B,A1C,A1D.(1)当长方体ABCD-A1B1C1D1的体积最大时,求二面角B-A1C-D的值;(2)线段A1C上是否存在一点P,使得A1C平面BPD,若有,求出P点的位置,没有请说明理由.