如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.(1)若点M是棱PC的中点,求证:PA∥平面BMQ;(2)若二面角M—BQ—C为30°,设PM=tMC,试确定t的值.
(本小题满分12分)设,,. (1)若,求的值; (2)若,求的值.
已知函数 (I)求函数在(1,0)点的切线方程; (II)若函数在其定义域内为单调递增函数,求实数p的取值范围; (III)若函数,若在[1,e]上至少存在一个x的值使成立,求实数p的取值范围.
如图,在四棱锥中,底面是正方形,其他四个侧面都是等边三角形,与的交点为,为侧棱上一点. (Ⅰ)当为侧棱的中点时,求证:∥平面; (Ⅱ)求证:平面平面; (Ⅲ)当二面角的大小为时, 试判断点在上的位置,并说明理由.
已知函数. ( I)当时,求函数的单调区间; ( II )若函数的图象与直线恰有两个不同的公共点,求实数b的值.
(12分) 已知函数,在时有极大值; (Ⅰ)求的值; (Ⅱ)求函数在上的最值.