已知抛物线 C : y 2 = 2 px ( p > 0 ) 的焦点F到准线的距离为2.
(1)求C的方程;
(2)已知O为坐标原点,点P在C上,点Q满足 PQ ⃗ = 9 QF ⃗ ,求直线 OQ 斜率的最大值.
已知都是实数,且. (1)求不等式的解集; (2)若对满足条件的所有实数都成立,求实数的取值范围.
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为. (1)请将上表补充完整(不用写计算过程); (2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:
(参考公式:,其中)
已知 (1)求函数的最小值; (2)对一切恒成立,求实数的取值范围; (3)证明:对一切,都有成立.
函数的图象记为E.过点作曲线E的切线,这样的切线有且仅有两条,求的值.
为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:(,为常数),若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和. (1)求的值及的表达式; (2)隔热层修建多厚时,总费用达到最小?并求出最小值.