在直角坐标系 xOy 中, ⊙ C 的圆心为,半径为1.
(1)写出 ⊙ C 的一个参数方程;
(2)过点 F 4 , 1 作 ⊙ C 的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
(10分)设A={|,,求: (1);(2)
已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点. (1)若R且,证明:函数必有局部对称点; (2)若函数在区间内有局部对称点,求实数的取值范围; (3)若函数在R上有局部对称点,求实数的取值范围.
【原创】已知是定义在上的奇函数,且,若,有恒成立. (1)判断在上是增函数还是减函数,并证明你的结论; (2)若对所有恒成立,求实数的取值范围.
对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “线性数列”. (1)若,,,数列、是否为“线性数列”?若是,指出它对应的实常数,若不是,请说明理由; (2)证明:若数列是“线性数列”,则数列也是“线性数列”; (3)若数列满足,,为常数.求数列前项的和.
在数列{an}中,a1=,an+1=,求a2、a3、a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.