(本题12分)已知M=(1+cos2x,1),N=(1,sin2x+a)(x,a∈R,a是常数),且y=· (O是坐标原点)⑴求y关于x的函数关系式y=f(x);⑵若x∈[0,],f(x)的最大值为4,求a的值,并说明此时f(x)的图象可由y=2sin(x+)的图象经过怎样的变换而得到
已知f(n)=(2n+7)3n+9,存在自然数m,使得对任意正整数n,都能使m整除f(n),猜测出最大的m的值。并用数学归纳法证明你的猜测是正确的。
如图,在三棱柱中,侧面,为棱上异于的一点,,已知,求: (Ⅰ)异面直线与的距离; (Ⅱ)二面角的平面角的正切值.
已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
已知复数,,求的取值范围。
命题方程有两个不等的正实数根, 命题方程无实数根。若“或”为真命题,求的取值范围。