如图,已知四棱锥P-ABCD的底面ABCD是菱形,且PC⊥平面ABCD,PC=AC=2,E是PA的中点。(1)求证:AC⊥平面BDE;(2)若直线PA与平面PBC所成角为30°,求二面角P-AD-C的正切值;(3)求证:直线PA与平面PBD所成的角φ为定值,并求sinφ值。
已知成等差数列.又数列此数列的前n项的和Sn()对所有大于1的正整数n都有.(1)求数列的第n+1项;(2)若的等比中项,且Tn为{bn}的前n项和,求Tn.
已知关于的不等式的解集是,求不等式的解集。
(本小题满分10分)△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列, (Ⅰ)求的值;(Ⅱ)设的值
(本小题满分10分)已知数列为等差数列,且(1)求数列的通项公式;(2)求数列的前n项和
(本小题满分14分) 己知函数,(Ⅰ)证明函数是R上的增函数; (Ⅱ)求函数的值域.(Ⅲ)令.判定函数的奇偶性,并证明